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A class of exact solutions is derived for the characteristic functional of a random 

velocity field of helical motions of a viscons incompressible fluid, 

The solution [ 1, 21 of the equation for the characteristic functional of the 
velocity field derived in variational derivatives relates to a statistically station- 

ary velocity field in a perfect incompressible fluid, and of the form of a Gauss- 

ian functional with constant spectral density of energy. 

As first pointed out by Gromeka [3], in helical motions of a perfect incompressible 
fluid velocity and the velocity curl are proportional 

rot v = xv (1) 

where 1c is a pseudoscalar constant whose dimension is that of the wave number. It was 

later shown by Steklov [4] that Gromeka’s helical solutions multiplied by exp (-VX”~), 

where Y is the kinematic viscosity and t is the time, also satisfy the Navier-Stokes 

equations. Helical velocity fields in a boundless space can be either space periodic or 
vanishing at infinity. 

The spectral form of Eq. (1) is 

iEjlm l<lt’m (k) = XC~ (k) (ia = -i) 
( (2) 

where ejrrn is the Levi-Civita tensor density. The system of Eqs. (2) has a nontrivial 

equation for vi (k) only if k 2 = x”, which implies that the expression for the spectral 
density of the velocity field vj (k) must contain the G -function 6 (k - 1 x I) as a multi- 

plier. The expression 
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k, 

vj(+ $fi~&~r~ 
> 

rin(k)6tk--Ixl) (3) 

Ai< = 6j,, - kjkn I k2 

where 6j, is a unit tensor, A, (k) is an arbitrary vector field which satisfies the condi- 

tion A ** (k) = An. (-k) imposed by the requirement for the velocity field to be real, 

satisfies system (2). Solution (3) depends on two arbitrary functions of components of 
vector A orthogonal to k and, consequently, is the general solution of Eq. (2) propor- 

tional to function S (k - 1 x I). The spectral density of a helical velocity field “j (k, t) 
in a viscous incompressible fluid is obtained, according to 143, by multiplying (3) by 

exp (-v+t). 
Let us consider the random velocity field in an unbounded fluid, whose model is the 

helical field. Such field may be specified by the formula for spectral density with ran- 
dom A (k) and x. The field 7)j (k, I) in terms of field A (k) is linear, hence when field 
A (k) for a fixed W. is Gaussian, then field of uj is also conditionally Gaussian for fixed 
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x. For this case it is possible to define the characteristic functional of the random field 
rj (k, t). In fact, in accordance with the previously stated, the characteristic functional 
of field vj (k, t) is the mean with respect to x of some Gaussian functional 

rf(z, t) +:p+ erp z (~j (k, l))~ Zj d3k - (,\; 
L 
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(~1~ (%I, t) zrn (kz, t)),sl $1) am (k2) d3kl d3kz 

(4) 

where 5 (x) is the distribution function of parameter X, <vj), and (QC, jX are the first and se- 

cond moments of field vi (k, t) relative to the conditional distribution for a fixed X, 
which by virtue of (3) are expressed in terms of moments (Aijx’ and <.4+4r>, , and z (k) 
is the argument of the functional which, for example, belongs to the class of finite fields 

satisfying the condition Z* (k) = z (-k). 

The characteristic functional (4) theoretically contains complete information on the 

random field l;j (P, t). Thus, for example, by substituting into the characteristic func- 

tional the expression exp (ikrl) @I -i- . . . -/- exp (ikrN) 8, where r; and tItj are con- 
stant vectors, for its argument, we obtain the characteristic function 8’ (31, . . ., tbf,) 
of velocity distribution of fluid particles at fixed points rlr . . ., rN [5]. Density of the 

multi-point distribution functionofvelocities j (PI, . . ., vN)can be derived from F (Of, 
. . . ( 0,) by the Fourier transformation 

Y 

All multi-point velocity distribution functions in the considered particular case are the 

mean of some Gaussian fictions, since the characteristic functional (4) is the mean of 
Gaussian functionals with respect to parameter X. In particular cases multi-point velo- 
city distribution function can be Gaussian, when distribution G (x) is concentrated at a 
single point. 

If field :\ (k) is selected so that its moments satisfy conditions 

(5) 

then functional (4) is invariant with respect to transformation I, (1;) --+ tikaz (k), where a 

is a constant vector, and consequently defines a statistically homogeneous field. And, if 

jrm in formula (5) depends only on the modulus of k2 and 0 (x) := 5 (-x), functional 

(4) is invariant also with respect to the transformation z (k) -+ Lz (L-‘k), where I, is any 
arbitrary rotation or reflection of space, and defines a statistically isotropic velocity 
field [5]. 

Since helical velocity fields satisfy the linear equation (I), hence a spectral energy 
transfer in a random field with helical patterns is absent. However the characteristic 
functionals presented here are examples of exact solutions of Hopf’s equations and pro- 
vide a certain idea about statistical distributions of velocity fields in a viscous incom- 
pressible fluid, which is compatible with equations of hydrodynamics. 

The author thanks E. A. Novikov for a number of valuable remarks. 
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The antiplane problem of wave excitation in a two-layered medium consisting 

of an elastic layer and a rigidly connected half-space, set in oscillation by a 

stamp, is considered. On the basis of the physical principle of ultimate absorp- 

tion [ 1, 21, the problem of the oscillation of a source 
on a surface is solved and consequently, the integ- 

ral equation of a mixed problem is derived. A de- 

tailed study of the dispersion equation by using an 

electronic digital computer preceded the solution 
of the problem. The solution of the contact prob- 
lem is constructed and a numerical analysis is made 
of the solutions obtained for specific values of the 

parameters. 

1. The case is considered when forces ‘tXy = 
Re [z (2) e-zwt] independent of the z coordinate 

Fig. 1 
are applied to a surface layer of thickness h in the 

domain X &---A, Al (Fig. l), and there are no 
normal stresses. The oscillations are assumed steady-state. 

Then applying the principle of ultimate absorption by the Fourier transform method, 

we arrive at the following formulas describing the displacements UJ (r, Y, 1) and wl (x, 
Y7 ‘) for the layer and the half-space, respectively : 

w (z, y, t) = Re [Wl(z y) ~~“‘~1 9 (1.1) 
a 

w(w)=& ’ 
a 

(5 + C51)e'" + (G -&I) e -W 
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